Riordan arrays and harmonic number identities
نویسنده
چکیده
Let the numbers P (r, n, k) be defined by P (r, n, k) := Pr ( H n −H (1) k , · · · , H (r) n −H (r) k ) , where Pr(x1, · · · , xr) = (−1)Yr(−0!x1,−1!x2, · · · ,−(r− 1)!xr) and Yr are the exponential complete Bell polynomials. By observing that the numbers P (r, n, k) generate two Riordan arrays, we establish several general summation formulas, from which series of harmonic number identities are obtained. In particular, some of these harmonic number identities also involve other special combinatorial sequences, such as the Stirling numbers of both kinds, the Lah numbers, the Bernoulli numbers and polynomials and the Cauchy numbers of both kinds.
منابع مشابه
Identities Involving Generalized Harmonic Numbers and Other Special Combinatorial Sequences
In this paper, we study the properties of the generalized harmonic numbersHn,k,r(α, β). In particular, by means of the method of coefficients, generating functions and Riordan arrays, we establish some identities involving the numbers Hn,k,r(α, β), Cauchy numbers, generalized Stirling numbers, Genocchi numbers and higher order Bernoulli numbers. Furthermore, we obtain the asymptotic values of s...
متن کاملThe Cauchy numbers
We study many properties of Cauchy numbers in terms of generating functions and Riordan arrays and find several new identities relating these numbers with Stirling, Bernoulli and harmonic numbers. We also reconsider the Laplace summation formula showing some applications involving the Cauchy numbers.
متن کاملOn an extension of Riordan array and its application in the construction of convolution-type and Abel-type identities
Using the basic fact that any formal power series over the real or complex number field can always be expressed in terms of given polynomials {pn(t)}, where pn(t) is of degree n, we extend the ordinary Riordan array (resp. Riordan group) to a generalized Riordan array (resp. generalized Riordan group) associated with {pn(t)}. As new application of the latter, a rather general Vandermonde-type c...
متن کاملAn identity of Andrews and a new method for the Riordan array proof of combinatorial identities
We consider an identity relating Fibonacci numbers to Pascal’s triangle discovered by G. E. Andrews. Several authors provided proofs of this identity, most of them rather involved or else relying on sophisticated number theoretical arguments. We present a new proof, quite simple and based on a Riordan array argument. The main point of the proof is the construction of a new Riordan array from a ...
متن کاملRiordan Arrays Associated with Laurent Series and Generalized Sheffer-Type Groups
A relationship between a pair of Laurent series and Riordan arrays is formulated. In addition, a type of generalized Sheffer groups is defined using Riordan arrays with respect to power series with non-zero coefficients. The isomorphism between a generalized Sheffer group and the group of the Riordan arrays associated with Laurent series is established. Furthermore, Appell, associated, Bell, an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computers & Mathematics with Applications
دوره 60 شماره
صفحات -
تاریخ انتشار 2010